Virtual Work - Combined Structures 4th Year
 Structural Engineering

2007/8

Dr. Colin Caprani

1. Introduction

1.1 Purpose

Previously we only used virtual work to analyse structures whose members primarily behaved in flexure or in axial forces. Many real structures are comprised of a mixture of such members. Cable-stay and suspension bridges area good examples: the decklevel carries load primarily through bending whilst the cable and pylon elements carry load through axial forces mainly. A simple example is:

Our knowledge of virtual work to-date is sufficient to analyse such structures.

2. Virtual Work Overview

2.1 The Principle of Virtual Work

This states that:

A body is in equilibrium if, and only if, the virtual work of all forces acting on the body is zero.

In this context, the word 'virtual' means 'having the effect of, but not the actual form of, what is specified'.

There are two ways to define virtual work, as follows.

1. Virtual Displacement:

Virtual work is the work done by the actual forces acting on the body moving through a virtual displacement.
2. Virtual Force:

Virtual work is the work done by a virtual force acting on the body moving through the actual displacements.

Virtual Displacements

A virtual displacement is a displacement that is only imagined to occur:

- virtual displacements must be small enough such that the force directions are maintained.
- virtual displacements within a body must be geometrically compatible with the original structure. That is, geometrical constraints (i.e. supports) and member continuity must be maintained.

Virtual Forces

A virtual force is a force imagined to be applied and is then moved through the actual deformations of the body, thus causing virtual work.

Virtual forces must form an equilibrium set of their own.

Internal and External Virtual Work

When a structures deforms, work is done both by the applied loads moving through a displacement, as well as by the increase in strain energy in the structure. Thus when virtual displacements or forces are causing virtual work, we have:

$$
\begin{aligned}
\delta W & =0 \\
\delta W_{I}-\delta W_{E} & =0 \\
\delta W_{E} & =\delta W_{I}
\end{aligned}
$$

where

- Virtual work is denoted δW and is zero for a body in equilibrium;
- External virtual work is δW_{E}, and;
- Internal virtual work is δW_{I}.

And so the external virtual work must equal the internal virtual work. It is in this form that the Principle of Virtual Work finds most use.

Application of Virtual Displacements

For a virtual displacement we have:

$$
\begin{aligned}
\delta W & =0 \\
\delta W_{E} & =\delta W_{I} \\
\sum F_{i} \cdot \delta y_{i} & =\sum P_{i} \cdot \delta e_{i}
\end{aligned}
$$

In which, for the external virtual work, F_{i} represents an externally applied force (or moment) and δy_{i} its virtual displacement. And for the internal virtual work, P_{i} represents the internal force (or moment) in member i and δe_{i} its virtual deformation. The summations reflect the fact that all work done must be accounted for.

Remember in the above, each the displacements must be compatible and the forces must be in equilibrium, summarized as:

Set of forces in
equilibrium

Set of compatible
displacements

Application of Virtual Forces

When virtual forces are applied, we have:

$$
\begin{aligned}
\delta W & =0 \\
\delta W_{E} & =\delta W_{I} \\
\sum y_{i} \cdot \delta F_{i} & =\sum e_{i} \cdot \delta P_{i}
\end{aligned}
$$

And again note that we have an equilibrium set of forces and a compatible set of displacements:

Set of compatible
displacements

In this case the displacements are the real displacements that occur when the structure is in equilibrium and the virtual forces are any set of arbitrary forces that are in equilibrium.

2.2 Virtual Work for Deflections

Deflection of a Truss

For the truss:

1. Find the forces in the members (got from virtual displacements or statics);
2. Thus we calculate the member extensions, e_{i} as:

$$
e_{i}=\left(\frac{P L}{E A}\right)_{i}
$$

3. Also, as we can choose what our virtual force δF is (usually unity), we have:

$$
\begin{aligned}
\delta W & =0 \\
\delta W_{E} & =\delta W_{I} \\
\sum y_{i} \cdot \delta F_{i} & =\sum e_{i} \cdot \delta P_{i} \\
y \cdot \delta F & =\sum\left(\frac{P L}{E A}\right)_{i} \cdot \delta P_{i}
\end{aligned}
$$

4. The only remaining unknown in the virtual work equation is the actual external deflection, y. Therefore, we can calculate the deflection of the truss.

Deflections in Beams

For a beam we proceed as:

1. Write the virtual work equation for bending:

$$
\begin{aligned}
\delta W & =0 \\
\delta W_{E} & =\delta W_{I} \\
y \cdot \delta F & =\sum \theta_{i} \cdot \delta M_{i}
\end{aligned}
$$

2. Place a unit load, δF, at the point at which deflection is required;
3. Find the real bending moment diagram, M_{x}, since the real rotations are given by:

$$
\theta_{x}=\frac{M_{x}}{E I_{x}}
$$

4. Solve for the virtual bending moment diagram (the virtual force equilibrium set), δM, caused by the virtual unit load.
5. Solve the virtual work equation:

$$
y \cdot 1=\int_{0}^{L}\left[\frac{M_{x}}{E I}\right] \cdot \delta M_{x} d x
$$

6. Note that the integration tables can be used for this step.

2.3 Virtual Work for Indeterminate Structures

General Approach

Using compatibility of displacement, we have:

Next, further break up the reactant structure, using linear superposition:

We summarize this process as:

$$
M=M^{0}+\alpha M^{1}
$$

- M is the force system in the original structure (in this case moments);
- M^{0} is the primary structure force system;
- M^{1} is the unit reactant structure force system.

For a truss, the procedure is the same:

The final system forces are:

$$
P=P^{0}+\alpha P^{1}
$$

The primary structure can be analysed, as can the unit reactant structure. Therefore, the only unknown is the multiplier, α.

We use virtual work to calculate the multiplier α.

Finding the Multiplier

For trusses we have:

$$
\begin{aligned}
\delta W & =0 \\
\delta W_{E} & =\delta W_{I} \\
\sum y_{i} \cdot \delta F_{i} & =\sum e_{i} \cdot \delta P_{i} \\
0 \cdot 1 & =\sum\left(\frac{P L}{E A}\right)_{i} \cdot \delta P_{i}^{1} \\
0 & =\sum\left(\frac{\left(P^{0}+\alpha \cdot \delta P^{1}\right) L}{E A}\right)_{i} \cdot \delta P_{i}^{1} \\
0 & =\sum\left(\frac{P^{0} L}{E A}\right)_{i} \cdot \delta P_{i}^{1}+\alpha \cdot \sum\left(\frac{\delta P^{1} L}{E A}\right)_{i} \cdot \delta P_{i}^{1} \\
0 & =\sum \frac{P^{0} \cdot \delta P_{i}^{1} \cdot L_{i}}{E A_{i}}+\alpha \cdot \sum \frac{\left(\delta P_{i}^{1}\right)^{2} L_{i}}{E A_{i}}
\end{aligned}
$$

And for beams and frames, we have:

$$
0=\sum \int_{0}^{L} \frac{M^{0} \cdot \delta M_{i}^{1}}{E I_{i}} d x+\alpha \cdot \sum \int_{0}^{L} \frac{\left(\delta M_{i}^{1}\right)^{2}}{E I_{i}} d x
$$

Thus:

$$
\alpha=\frac{-\sum \frac{P^{0} \cdot \delta P_{i}^{1} \cdot L_{i}}{E A_{i}}}{\sum \frac{\left(\delta P_{i}^{1}\right)^{2} L_{i}}{E A_{i}}} \text { or } \alpha=\frac{-\sum \int_{0}^{L} \frac{M^{0} \cdot \delta M_{i}^{1}}{E I_{i}} d x}{\sum \int_{0}^{L} \frac{\left(\delta M_{i}^{1}\right)^{2}}{E I_{i}} d x}
$$

3. Virtual Work for Combined Structures

3.1 Basis

The virtual work that is done in a truss member is exactly the same concept as the virtual work done in a beam element. Thus the virtual work for a structure comprised of both types of members is just:

$$
\begin{aligned}
\delta W & =0 \\
\delta W_{E} & =\delta W_{I} \\
\sum y_{i} \cdot \delta F_{i} & =\sum e_{i} \cdot \delta P_{i}+\sum \theta_{i} \cdot \delta M_{i}
\end{aligned}
$$

In which the first term on the RHS is the internal virtual work done by any truss members and the second term is that done by any flexural members.

If a deflection is sought:

$$
\begin{aligned}
y \cdot \delta F & =\sum e_{i} \cdot \delta P_{i}+\sum \theta_{i} \cdot \delta M_{i} \\
y \cdot 1 & =\sum\left(\frac{P L}{E A}\right)_{i} \cdot \delta P_{i}+\sum \int_{0}^{L}\left[\frac{M_{x}}{E I}\right] \cdot \delta M_{x} d x
\end{aligned}
$$

To solve for an indeterminate structure, we have both:

$$
\begin{aligned}
M & =M^{0}+\alpha M^{1} \\
P & =P^{0}+\alpha P^{1}
\end{aligned}
$$

For the structure as a whole. Hence we have:

$$
\begin{aligned}
\delta W & =0 \\
\delta W_{E} & =\delta W_{I} \\
\sum y_{i} \cdot \delta F_{i} & =\sum e_{i} \cdot \delta P_{i}+\sum \theta_{i} \cdot \delta M_{i} \\
0 \cdot 1 & =\sum\left(\frac{P L}{E A}\right)_{i} \cdot \delta P_{i}^{1}+\sum \int_{0}^{L}\left[\frac{M_{x}}{E I}\right] \cdot \delta M_{x} d x \\
0 & =\sum\left(\frac{\left(P^{0}+\alpha \cdot \delta P^{1}\right) L}{E A}\right)_{i} \cdot \delta P_{i}^{1}+\sum \int_{0}^{L}\left[\frac{\left(M_{x}^{0}+\alpha M_{x}^{1}\right)}{E I}\right] \cdot \delta M_{x} d x \\
0 & =\sum\left(\frac{P^{0} L}{E A}\right)_{i} \cdot \delta P_{i}^{1}+\alpha \cdot \sum\left(\frac{\delta P^{1} L}{E A}\right)_{i} \cdot \delta P_{i}^{1}+\sum \int_{0}^{L} \frac{M_{x}^{0} \cdot \delta M_{x}^{1}}{E I} d x+\alpha \cdot \sum \int_{0}^{L} \frac{\left(\delta M_{x}^{1}\right)^{2}}{E I} d x
\end{aligned}
$$

Hence the multiplier can be found as:

$$
\alpha=-\frac{\sum \frac{P^{0} \cdot \delta P_{i}^{1} \cdot L_{i}}{E A_{i}}+\sum \int_{0}^{L} \frac{M^{0} \cdot \delta M_{i}^{1}}{E I_{i}} d x}{\sum \frac{\left(\delta P_{i}^{1}\right)^{2} L_{i}}{E A_{i}}+\sum \int_{0}^{L} \frac{\left(\delta M_{i}^{1}\right)^{2}}{E I_{i}} d x}
$$

Note the negative sign!

Though these expressions are cumbersome, the ideas and the algebra are both simple.

Integration of Bending Moments

We are often faced with the integration of being moment diagrams when using virtual work to calculate the deflections of bending members. And as bending moment diagrams only have a limited number of shapes, a table of 'volume' integrals is used.

3.2 Examples

We will do the examples in class - keep a list of them here:

Sample Paper 2007

3. For the rigidly jointed frame shown in Fig. Q3, using Virtual Work:
(i) Determine the bending moment moments due to the loads as shown;
(ii) Draw the bending moment diagram, showing all important values;
(iii) Determine the reactions at A and E;
(iv) Draw the deflected shape of the frame.

Neglect axial effects in the flexural members.
Take the following values:
I for the frame $=150 \times 10^{6} \mathrm{~mm}^{4}$;
Area of the stay $E B=100 \mathrm{~mm}^{2}$;
Take $E=200 \mathrm{kN} / \mathrm{mm}^{2}$ for all members.

FIG. Q3

Semester 1 Exam 2007

3. For the rigidly jointed frame shown in Fig. Q3, using Virtual Work:
(i) Determine the bending moment moments due to the loads as shown;
(ii) Draw the bending moment diagram, showing all important values;
(iii) Determine the reactions at A and E;
(iv) Draw the deflected shape of the frame.

Neglect axial effects in the flexural members.
Take the following values:
I for the frame $=150 \times 10^{6} \mathrm{~mm}^{4}$;
Area of the stay $E F=200 \mathrm{~mm}^{2}$;
Take $E=200 \mathrm{kN} / \mathrm{mm}^{2}$ for all members.

FIG. Q3

Volume Integrals

		j \qquad 1		
	$\frac{1}{3} j k l$	$\frac{1}{6} j k l$	$\frac{1}{6}\left(j_{1}+2 j_{2}\right) k l$	$\frac{1}{2} j k l$
k \qquad	$\frac{1}{6} j k l$	$\frac{1}{3} j k l$	$\frac{1}{6}\left(2 j_{1}+j_{2}\right) k l$	$\frac{1}{2} j k l$
	$\frac{1}{6} j\left(k_{1}+2 k_{2}\right) l$	$\frac{1}{6} j\left(2 k_{1}+k_{2}\right) l$	$\begin{aligned} & \frac{1}{6}\left[j_{1}\left(2 k_{1}+k_{2}\right)+\right. \\ & \left.j_{2}\left(k_{1}+2 k_{2}\right)\right] l \end{aligned}$	$\frac{1}{2} j\left(k_{1}+k_{2}\right) l$
	$\frac{1}{2} j k l$	$\frac{1}{2} j k l$	$\frac{1}{2}\left(j_{1}+j_{2}\right) k l$	jkl
$\begin{array}{r} 1 \\ -1^{a}+a^{b}-1 \end{array}$	$\frac{1}{6} j k(l+a)$	$\frac{1}{6} j k(l+b)$	$\begin{aligned} & \frac{1}{6}\left[j_{1}(l+b)+\right. \\ & \left.\quad j_{2}(l+a)\right] k \end{aligned}$	$\frac{1}{2} j k l$
	$\frac{5}{12} j k l$	$\frac{1}{4} j k l$	$\frac{1}{12}\left(3 j_{1}+5 j_{2}\right) k l$	$\frac{2}{3} j k l$
I_{1}^{k}	$\frac{1}{4} j k l$	$\frac{5}{12} j k l$	$\frac{1}{12}\left(5 j_{1}+3 j_{2}\right) k l$	$\frac{2}{3} j k l$
	$\frac{1}{4} j k l$	$\frac{1}{12} j k l$	$\frac{1}{12}\left(j_{1}+3 j_{2}\right) k l$	$\frac{1}{3} j k l$
k 1	$\frac{1}{12} j k l$	$\frac{1}{4} j k l$	$\frac{1}{12}\left(3 j_{1}+j_{2}\right) k l$	$\frac{1}{3} j k l$
	$\frac{1}{3} j k l$	$\frac{1}{3} j k l$	$\frac{1}{3}\left(j_{1}+j_{2}\right) k l$	$\frac{2}{3} j k l$

Eranple!

EA $\ddagger \in I$ ts per bolewr!

Cherse cokle as redundont.

Ten (1) $=0$

$$
2=1^{2} \times 2 / 16 \times 10^{3}=1.25 \times 10^{-4}
$$

(3)

$$
\begin{aligned}
\int_{\text {AD }} \frac{u_{0} u_{0} d s}{f I} & \left.=\frac{1}{6 E I}(40)(-2)+2(-4)\right)^{2} \\
& =-0.0166 \\
& =-16.662 \times 10^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4): } \int \frac{m_{1}^{2} d s}{\epsilon I}=\frac{1}{3 E I}(\$ 4)(-4) 4=2.667 \times 10^{-3} \\
& \therefore 0=0+\alpha_{1}\left(1.25 \times 10^{-4}\right)+\left(-66.67 \times 10^{-3}\right)+\alpha_{1}\left(2.667 \times 10^{-3}\right) \\
& \therefore x_{1}=5.97 \\
& \therefore \text { Tensiom a arle }=5.97 \mathrm{~kJ} \\
& \therefore \frac{16.12}{\frac{1-2.94}{11.94}} \\
& \text { Bous (kana) }
\end{aligned}
$$

Example 2

$$
E I=8 \times 10^{3} \mathrm{kNMm}^{2}
$$

$$
\Delta A=16 \times 10^{3} \mathrm{~mm}
$$

Final the Burs and $\delta_{C v}$

For $B D$ as reclendent, $\alpha=25.7$

$$
\delta_{C V}=25 \mathrm{~mm} t
$$

(Dore in class)

Problem

$$
\begin{aligned}
& E A=16 \times 10^{3} \mathrm{~km} \\
& E E=8 \times 10^{3} \mathrm{~km}^{2} \mathrm{~m}^{2}
\end{aligned}
$$

Find the Buy $\& \delta_{C v}$
for $C D$ as redunduat, $\alpha=7.8$

$$
\delta_{C U}=1.93 \mathrm{~mm}
$$

(Dane in clans)

2nerear

$$
\begin{aligned}
& 64=16 \times 10^{3} \mathrm{kN} \\
& E I=8 \times 10^{3} / \mathrm{m} \mathrm{Na}
\end{aligned}
$$

1) Solve for tee Buid \& force in ete corble CD.
2) Detertine tio gptimun liggte of ale calzle frefficiconcy of he becun.

Cherose tte colsle as tre dedirndent

Ext. U.W. = las. V.w.
tre. V.torece $=$ lat V_{0} farece
Ex. RER SCS. Iart. REAT DUSP

$$
1 \times 0 \quad=\Sigma P_{1} p+\Sigma \omega, m
$$

Bet, $p=P L \neq A=\frac{\mu l d s}{\epsilon I}$
H1so, $P=P_{0}+\alpha P_{1} \& \quad \omega=M_{0}+\alpha M_{1}$

$$
\begin{aligned}
\therefore \quad= & \sum P_{1}\left(P_{0}+\alpha P_{1}\right) \frac{L}{E A}+\sum M_{1}\left(M_{0}+\alpha M\right) \frac{d s}{E I} \\
= & \frac{\sum P_{1} P_{0} L}{E A}+\alpha \frac{\sum P_{1}^{2} L}{\angle A}+\frac{\sum M_{1} M_{0} d s}{\frac{E I}{E}}+\alpha \frac{\sum \frac{M_{1}^{2} d}{K I}}{(3}
\end{aligned}
$$

Siblieste each term soperolely:
(1): $E P_{1} P_{0} L / E A=0$ as $P_{0}=0$ far all members
(2): $\sum A_{1}^{2} C / E 4=\left(\frac{(1)^{2} 2}{16 \times 10^{3}}\right)_{C D}=\underline{1.25 \times 10^{-4}}$
$(3)=\sum \frac{\text { El,nods }}{E I}:$

Internote thise togetter asing the tolkle of intepstion．Wrte blene is anly the tolening $\square \times \square=\frac{5}{12} j k l$ heree we have zhalves of
（4）：

$$
\begin{aligned}
& \sum \frac{a l^{2} d s}{s \varepsilon} \\
& \xrightarrow{\text { 工机 }} \\
& \xrightarrow{2 x} \\
& \int_{A B} \frac{m_{1}^{2} d s}{E I}=\frac{2}{E I} \times\left(\begin{array}{l}
\left(\frac{1}{3}\right)(-1)(-1)(2) \\
2 \text { holves. }
\end{array} \begin{array}{l}
\text {, lenget of } \\
1 / 2 \text { shepe }
\end{array}\right. \\
& =\frac{1.33}{E I}=8.33 \times 10^{-5}
\end{aligned}
$$

Thens are have：

$$
\begin{aligned}
& 0=0+\alpha_{1}\left(1.25 \times 10^{-4}\right)-2.083 \times 10^{-3}+\alpha_{1}\left(8.33 \times 10^{-7},\right. \\
\Rightarrow \alpha_{1} & =H 0
\end{aligned}
$$

1e．The facce in te cable $=10 \mathrm{~N}=10 \mathrm{kN}$

Thus, $t=P_{0}+\alpha P, \Rightarrow$ cate fersi $=10 \mathrm{~m}$

$$
\begin{aligned}
& m=m_{0}+\infty M, \\
\Rightarrow & d t D, w=+10+10(-1)=0 \\
\because \quad & A \frac{5}{\frac{5}{1}} \frac{10}{4}
\end{aligned}
$$

Eal obent $t=0 \therefore 5 \times 4^{2} / 2-10 \times 2-4 L_{s}=0$

$$
\begin{aligned}
& \therefore v_{B}=5 k, \\
& v_{Y}=0 \quad \therefore \times 4-10-v_{4}-v_{B}=0 \\
& \therefore V_{A}=56 \omega
\end{aligned}
$$

(f. Socue ansuer os pueurès Levo shaer $E 5 / 5=1 \mathrm{~m}$ from ot \& B heree Move: sul obout Murar $=0 \therefore s^{5} \times 1^{2} / 2-5$ + Mhan $=0$

R201, (2)
Efficiency of ble kecm means oht the noment, are deri-led by tee smollent pasiblo becur. Thens tre morunts (horging \& sagsing) abarid tie equol to optinise use of the vicoltiol:

The bean is tes sem of horo sinictures:

for efficiency,

$$
\begin{aligned}
& m_{\text {nog }}=m_{\text {sag }} \\
& \Rightarrow-m_{p}+m_{\omega}=+\frac{3}{4} m_{\omega}-\frac{1}{2} m_{A} \\
& \Rightarrow m_{\omega} \cdot \frac{1}{4}=\frac{1}{2} m_{p} \\
& \Rightarrow m_{p}=\omega_{\omega} / 2 \\
& 14 P_{L} / 4=\omega 1^{2} / 16 \Rightarrow P=\omega L / 4
\end{aligned}
$$

There is on aror here resolved clons: $\left|\omega_{\text {neg }}\right|=\left|\mu_{\text {sas }}\right|$
we know that $w=5 k 0 / \mathrm{m} \notin C=4 \mathrm{~m}$

$$
\therefore P=5 \mathrm{leN}
$$

$O R, x=5.0$ frema U.W. analysis
Ow virtual worle equatim, ofter toleing cits acconent bte uskenomn luget. of lete coble, L, becomes:

Semus $1,3 \neq 4$ are tere same,
Term 2, $\sum P_{1}^{2} L / E_{A}=(1)^{2} L / E A=\frac{L}{16 \times 10^{3}}$

$$
\begin{aligned}
& \therefore 0=\alpha\left(\frac{L}{16 \times 10^{3}}\right)-2.083 \times 10^{-3}+\alpha\left(8.33 \times 10^{-5}\right) \\
& \therefore \alpha=\frac{2.083 \times 10^{-3}}{\frac{L}{6 \times 10^{3}}+8.33 \times 10^{-5}}=5 \text { for sfficiency } \\
& \therefore L=5.33 \mathrm{~m}
\end{aligned}
$$

OR, we could also alter $£ A$:

$$
\begin{aligned}
& \text { ie. } S=\frac{2.083 \times 10^{-3}}{\sqrt{2}+8.33 \times 10^{-5}} \text { of ongiof benett } \\
& \text { of corble in le } \\
& \text { purtalem. } \\
& \therefore E A=6 \times 10^{3} \mathrm{kN} \\
& \text { 1․ } 6 / 16=0.375 \text { tinces arigmion EA }
\end{aligned}
$$

ExAmpce 1

The EEAM REB AUO SmuT ES ARE RINDLY CONNECTED AT C. CABLE $A D B$ IS Contraricus oute RUF FRICTLEWGES Puney AT D.

EI MAVES: $A C B=2 E E=8 \times 10^{3} \mathrm{hdu}^{2}$

$$
C D=E I=4 \times 10^{3} \mathrm{kah}^{2}
$$

Ef UAWES: $A D B=16+10^{3} \mathrm{~kJ}$
ARLAL EffECES \because AB $\$ C D$ ARE loneses $>$.

The sTRucruet is MDOET. TO 10 IE. IF UE RENLOE RLE CABCE IT IS A SNAT. DET. BEAN1.
\Rightarrow SELFCT PADB (THE CMGUE FXEE) AS TE LEDUNDANE FEREE.

USENG VIRTHAT GORR TO SOLVE, WE loopres:

$$
\begin{aligned}
& P=\text { REAL AXLAL DSSP: } \\
& M=R E A E \text { ROTATKN } \\
& P=\text { REAL FURCE? DUE TO R土AL } \\
& M=R E A \text { NCNEFNTI APPLED cosADS }
\end{aligned}
$$

Po, Mo ARE REAL ERECE/CNentEATS IN Des CuT-BACK STRUC Rulf Dut To TUE REAL APPLED CONSS:
 Bus.

$$
P_{0}=0 \text { wotsos }
$$ 4Lso.

APPY A VWRUAL FRCE (UNTT COAB) in weul of The Redundat:

PI

ExERAR $=1$ NTERNH
Veruar Wenk $=$ bertuac wher.
Ex. VIRTLL force $=\frac{\text { WNT VWrete furct }}{x}$ Ex. RETL DISPREEUENT NTT. REAL FCREE

$$
1 \times 0=E P_{1} p+E A_{1}, m
$$

p is A REAT DISARAEENENT HOD a IS A peal poIntren:

$$
\begin{aligned}
& P=P_{0}+x_{1} \\
& M=M_{0}+\alpha_{1} M_{1}
\end{aligned}
$$

k_{1} is The urkadoun forke P_{1} \& IL, ADE FORCFS/abonvints Fhem a UnT LCAD.

UENE A REAL DEICACENENT IS:

$$
P=\frac{P L}{E_{A}}=\left(P_{0}+\alpha_{1} P_{1}\right) \frac{L}{E A}
$$

fore A SINGLE WEWBER, SO SuM Fore An Menrsfes.

Smantelly, fiem mour I:

$$
m=\frac{M d s}{E I}=\left(M_{0}+\alpha_{1} M_{1}\right) \frac{d s}{E I}
$$

AGFin, sum furk Au wEmPERS. RETUNING TO TUE U.W ExH2SSECON WE Nows SEE

$$
\begin{aligned}
0 & =\sum P_{1}\left(P_{0}+\alpha_{1} P_{1}\right) \frac{L}{E+}+\sum M_{1}\left(M_{0}+x_{1} M_{1}\right) \frac{d s}{E I} \\
& =\Sigma P_{1} P_{0}+\alpha_{1} \leq \frac{P_{1}^{2} L}{E+}+\sum M_{1} H_{0} \frac{d s}{E I}+x_{1} \sum \frac{M_{1}^{2} d s}{E I}
\end{aligned}
$$

NOW WE CHCNLATE EACHCH TLE TERULS IN DEE ABOUE EXPEESSION:

$$
-\leq P P_{0}
$$

$P_{0} /$ OE RSLAEED STRUCTUE: $P_{0}=0$

$$
\begin{aligned}
& \Rightarrow \Sigma P_{0}=0 \\
& -\sum \frac{P_{1}^{2} L}{E_{A}}
\end{aligned}
$$

AS WE ARE NEOLECTINE AXCAL ELFECTS iN RUE BEATM WENHERS $A C B \not \subset C$ WE CNXY NEFD EUALUATE THE ExRRESSCN FOR WFMBERS $A D D B$.

Mencer	P_{1}	P_{1}^{2}	L	$E A$	$P_{1}^{2} L / E A$
$A D$	1	1	3	16×10^{3}	1.875×10^{-4}
$D B$	1	1	4	16×10^{3}	2.500×10^{-4}
	$=0.438 \times 10^{-3}$				

ALTHOCUH CUE COZILD EASILY EUALMATE TWO REMLEES AS：

$$
\sum \frac{P^{2} L}{I A}=\frac{(1)^{2}(3)}{16 \times 10^{3}}+\frac{(1)^{2}(4)}{16 \times 10^{3}}=0.438 \times 10^{-3}
$$

WRetal ure RANE Netny monet WEWBERS THE TABULHR FERM is BENTEE AS ERRONS ARE CESS cuxely．

$$
\frac{\sum M_{1} M_{0} d s}{2 I}
$$

 Dows By A Monen5，as us点 TLE INTECRAL TABLES．
lowenk wiwner ed AS alo is IERO $二 厶$ THIS NLENLBER

Atso，SAOOMNO Wenlint is positile ANO A MOEGUNE MCNENT IS ISECATIUE．

- cencetar Ac:

$$
\int M, M d s=\frac{1}{3} j k l
$$

of is M Menvent, k is M, momener

$$
\begin{aligned}
\Rightarrow \int\left(\frac{M_{1} \text { abds }}{I I}\right)_{4 c} & =\frac{1}{3}\left[\frac{1}{3}(-1.44)(22.12)(1.8)\right] \\
& =\frac{-19.11}{E I C} \\
& =-2.388 \times 10^{-3}
\end{aligned}
$$

- LENOTHCB
wr wre SAUT THE ME DUACRATAN FER NEENBER CB US INTO CONSTTUANT PARTS THAT ARE GVEN IN THE in TECOLAL TABCES.
$\cdot \frac{\sin 1^{2} d s}{E I}$
W. Wrectine DeE M, DUACxAMM ACAENSF ITSEL, UETNK TRE NTEXHL THSUS: TRCOUOLE'S: $\frac{1}{3} j k l$
$-\tan x \rightarrow \pi\langle \rangle:$

$$
\frac{1}{E} I\left[\frac{1}{3}(0.48)(0.48)(2-4)\right]=\frac{0.184}{E I}
$$

- 5 ngtr AC:

$$
\frac{1}{E} \pm\left[\frac{1}{3}(-1.44)(-1.44 X(1-8)]=\frac{1244}{5 I}\right.
$$

- Leadetr cB:

$$
\frac{1}{E}\left[\frac{1}{3}(-1-92)(-1.22)(3.2)\right]=\frac{3.932}{E}
$$

EI forr $A C B=8 \times 10^{3} \mathrm{kN} \mathrm{Ma}^{2}$
EI FCTR $C D=4 \times 10^{3} \mathrm{kn} \mathrm{m}_{\mathrm{m}^{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{8 \times 0}:[1.244+3.832]+\frac{1}{4 \times 0}=[0.184] \\
& \quad=0.693 \times 10^{-3}
\end{aligned}
$$

$$
c+B
$$ Ao (1)

$$
M_{0}(2)
$$

-1.92
 M,

$$
3 \cdot 2
$$

(1)

$$
\begin{aligned}
\int \frac{N_{1} m_{0}(1) d s}{E I} & =\frac{1}{E I} \cdot \frac{1}{3} j k l \\
\Rightarrow \int\left(\frac{m, n o d s}{E}\right)_{C B G} & =\frac{1}{ \pm I}\left[\frac{1}{3}(-1.92)(22-12)(3.2)\right] \\
& =\frac{-45 \cdot 30}{5}
\end{aligned}
$$

$$
\begin{aligned}
(2) \quad \int \frac{w_{1} N_{0}(2) d s}{I I} & =\frac{1}{E I} \cdot \frac{1}{3} j h l \\
& =\frac{1}{I I}\left[\frac{1}{3} \cdot(-1 \cdot 92)(15.36)(3.2)\right] \\
& =\frac{-31.46}{E I} \\
\Rightarrow \int \frac{w_{0} d_{D} d s}{I I} & =\frac{-45.30}{E I}+\frac{31-46}{E I}=\frac{-76.76}{I I}=-9.6 \times 10^{-3}
\end{aligned}
$$

Now $A D D A C \& C B \Rightarrow-11.99 \times 10^{-3}$

Now, NETMNNG TDE U.W. Ecul:

$$
\begin{aligned}
& o=0+0.438 \times 10^{-3} \alpha_{1}+\left(-11.99 \times 10^{-3}\right)+0.693 .0^{-3} \alpha_{1} \\
& \Rightarrow 1.131 \alpha_{1}=11.99 \\
& \Rightarrow \quad \alpha_{1}=10.60 \mathrm{~h}
\end{aligned}
$$

Positulu unule arDichtes THAT DURFCREN cF x, chosfu urs cexefeci \Rightarrow Cuber is ial TENSion AS we SUESPCTED!

- ABCD:

$$
\begin{aligned}
& E=10 \mathrm{kn}^{2} / \mathrm{mm}^{2} \\
& A=12 \times 10^{4} \mathrm{mui}^{2} \\
& I=36 \times 10^{88} \mathrm{~mm}^{4}
\end{aligned}
$$

- AEBFC:
$E=200 \mathrm{k} / \mathrm{mman}^{2}$

$$
4=2 \times 10^{-3} \mathrm{~mm}^{2}
$$

Croost be As REDuUDTHIT:

$$
f M=P_{0} M_{0}+\alpha\left(P_{1} M_{1}\right)
$$

Flest aracyse hee cut Bited sReuciult FOAR P_{0}, N_{0}.

$M=10 \times E^{2} / 2=180 \mathrm{~cm} \mathrm{M}_{\mathrm{a}} \quad V_{A}=10 \times 6=60 \mathrm{dJ}$.

EXT U.W = WT. V.W
EKTVLKT FERCE x INT V.EVRCE EXT. RETL DISP

INT. REAL DISP.

$$
\begin{aligned}
& 1 \times 0=\sum \frac{P_{1} P L}{A E}+\sum \frac{M_{1} M d s}{E I} \\
\Rightarrow & \sum \frac{P_{1} P_{0} L}{E A}+\times \frac{\sum P_{C}^{2} L}{E A}+\int \frac{M_{1} M_{0} d s}{E I}+\times \int \frac{M_{1}^{2} d s}{E I}=0 \\
= & \sum \frac{P_{1} P_{0} L}{E A} ; \sum \frac{P_{1}^{2} L}{E A}
\end{aligned}
$$

arEalBER	P_{1}	P_{0}	$E A$	L	$\frac{P_{1} P_{0} C}{E A}$	$\frac{P_{1}^{2} L}{F A}$
$A B$	-477	-60	1.2×10^{6}	4	114.3	1.088
$\left(\times 10^{-6}\right)$	$\left(\times 10^{-6}\right)$					
$B C$	$-4 / 7$	0	1.2×10^{6}	4	0	1.088
$B E$	-1	0	04×10^{6}	3	0	7.5
$B F$	-1	0	11	3	0	7.5
$A E$	$5 / 7$	0	11	5	0	6.377
$E F$	$4 \frac{57}{57}$	0	11	$3 \sqrt{2}$	0	6.927
$F C$	$5 / 7$	0	11	5	5	6.377
$C D$	0	0	1.2×10^{6}	2	6	0

- ABCD : $E A=(10)\left(12 \times 10^{4}\right) \mathrm{hw}=1.2 \times 10^{6} \mathrm{~km}$
$\left.\because A E R F C: E A=(200)\left(2 \times 10^{3}\right) \mathrm{ka}\right)=0.4 \times 10^{6} \mathrm{kN}$.

$$
\begin{aligned}
& \text { - } \int \frac{M_{1} \mu_{0} d s}{E I}: \\
& E I=(10)\left(36 \times 10^{8}\right) 6 \mathrm{maman}^{2} /\left(10^{3}\right)^{2}\left(\mathrm{man}^{2} / \mathrm{m}^{2}\right) \\
& =36 \times 10^{3} \mathrm{k} \mathrm{Nm}^{2} \\
& \text { DOB }=\frac{1}{E I}[1 / 2(-12 / 7)(120)(4)]=\frac{-617}{E I}=-17142.8 \times 10^{-6}
\end{aligned}
$$

- BC

- Rabacoric.

$$
1 / E I\left[1 / 4\left(C^{-12} / 7\right)(80)(4)\right]=\frac{-137.14}{E I}
$$

- ThutNore:

$$
1 / E I[1 / 3(-12 / 7)(80)(4)]=\frac{-182.86}{E I}
$$

$$
\begin{aligned}
& \text { - RECTANERE: } \\
& \quad \text { TEI }[1 / 2(-12 / 2)(20)(4)]=\frac{-685}{E I} \\
& \Rightarrow B C=\frac{1}{E I}(-137.14-182.86-68.57)=-10793.6 / \times 10^{-6} \\
& \Rightarrow \quad \int \frac{M_{1} M_{0} d s}{E I}=-27,936.41 \times 10^{-6}
\end{aligned}
$$

- $\int \frac{M_{1}^{2} d s}{E I}:$

$$
=\frac{2}{E I}\left[\frac{1}{3}\left(-\frac{12}{2}\right)^{2}(4)\right]=217.69 \times 10^{-6}
$$

Fich IAvuES CNTO EON:

$$
\begin{gathered}
114.3+36.86 x-27,936.41+217.69 x=0 \\
\Rightarrow x=109.3
\end{gathered}
$$

FWite Utues:

$$
\begin{aligned}
& P=P_{0}+\alpha P_{1} \\
& M=M_{0}+\alpha M_{1}
\end{aligned}
$$

P
M

Exptrupe 3

PROBOEM: CALCUWATE TUE WAK InTEASiTy af UDL, W, RUAT CAN BE CARRLED BY TLE BRACES SAAN ABC. RLE ALCOUTABLE BENDNG SRESS is $\neq 150 \mathrm{~N} / \mathrm{mms}^{2}$ Anss DeE AHCOUNBLE DIREG AXYL SRRESS (TARC) IS $\neq 100 \mathrm{~N} / \mathrm{mmn}^{2}$. THE BEAM ABC IS 500 MM REFP. ITS AREA is $6 \times 10^{\circ} \mathrm{mm}^{2}$ AnD $1 T S I=125 \times 10^{7} \mathrm{~mm}^{4}$. AL OTHER MEMBERS: $A=1000 \mathrm{~mm}^{2}$. ALSO, E is constrant THeOUGHOUT.
foDurs Ancy:
'MAMCME' DSD OA THE ABCNE:

IF UK PENCNE DE:

'BEANI ACREN.

IT 15 ABBARENT THATIT SA 1° REDUASANT SDRUCTURE. CHOOSI DE AS ONE REDUNOANT.
P_{0}, M_{0}

NOTE: IT IS CNEAR FROM TLE RRCRCEM WUAT WE NEED, SCMEHCOS, TO FUND And ExARESSION FOR THE SMRESSES IN TUE WEWGERS, IN TERMS OF ω. ONLY RUEN CAN WE PUT iN OUR WUAX ALLCRMABLE STRFES AND SOLUE FCNE w. START BY ESTABCLISMCNE Po, No ACTCNS IN TERMS of w :

$$
\sum F_{y}=0 \Rightarrow U_{A}=V_{B}=5 w \quad(h N)
$$

$P_{0}=0$ AH neswortes.

Sus $4 \times x$

$$
M_{0 x}=5 \omega x-\omega x^{2} / 2
$$

P, M

NoDE: IF TUE BEAM SUPPCRTS GTERE A DEN \& ROccer reser ws woruld wque AN HXNAL STRESS IN RUE BEAM AS UFLL IAS DUE BENDING STRESSES. HOMEVER, WE NUTVE A DIN-DIN SCOPCRT SYSTEM AND TUE SURDCRTS PIELEFCRE MRDCY RESARANT AND NO AXWAL FCREEES ANF RRESENT (TUE AXCAL SREESS DUE TO TUE RESTRACNED CONQITMCSNAL DISRLACFWENT IS cONSLDFRED NEGUIOHSLE). ALSO, NOTLE TNERF ARL NO VERTEAL REACTLCNS: $\sum F_{y}=0$.

$$
M_{1 x}=-1 / 2 x
$$

- $M \oplus=$ TENSion in BTM of BEtar
- $P \oplus=$ AxLal NENSION.

VIRRUAC WCRK EQUATRENS:
$\Sigma E X T$ WARK $=1 \times 0=0$
Σ NNT WHRK $=E_{1} I_{p}+E W, n$
THEREFORE TUE FOLLCWANG APPLES:

$$
\alpha_{1}=-\left[\frac{\int_{0}^{L} \frac{P_{0} P_{0} d x}{E A}+\int_{0}^{L} \frac{M_{1} M 0 d s}{E I}}{\int_{0}^{L} \frac{P_{i}^{2} d x}{E A}+\int_{0}^{L} \frac{M_{1}^{2} d s}{E I}}\right]
$$

IN ORDFR TO EUALUATE TUE UAME OF EACM OF TLE ABCNE TERMS A TRGLE WCRMD BE BENEFICIAL:

MEMBER	$E A$	$E I$	M_{0}	P_{0}	M	P_{1}	L MirI
$A B$	6×10^{-2}	1.25×10^{-3}	$5 \omega x-\omega \times 2 / 2$	0	$-x / 2$	0	$0 \rightarrow 5$
$B C$	6×10^{-2}	1.25×10^{-3}	$5 \omega x-\omega x^{2} / 2$	0	$-x / 2$	0	$0 \rightarrow 5$
$A E$	1×10^{-3}	-	-	0	0	$-1 / \sqrt{2}$	$0 \rightarrow 2.5 \sqrt{2}$
$D B$	1×10^{-3}	-	-	0	0	$+1 / \sqrt{2}$	$0 \rightarrow 2.5 \sqrt{2}$
$B E$	1×10^{-3}	-	-	0	0	$+1 / \sqrt{2}$	$0 \rightarrow 2.55 \sqrt{2}$
$D C$	1×10^{-3}	-	-	0	0	$-1 / \sqrt{2}$	$0 \rightarrow 2.5 \sqrt{2}$
$D E$	1×10^{-3}	-	-	0	0	-1	$0 \rightarrow 5$

Nous WE CAN contrarue Ans EUAllatiE TLE WTEGRALS.

- $\int_{0}^{L} \frac{P_{1} P_{0} d x}{E A}=0$ AS $P_{0}=0$ FRRALL.

$$
\begin{aligned}
\int_{0}^{L} \frac{M_{1} M_{0} d s}{E I} & =2 \int_{0}^{5}\left[\left(5 \omega_{x}-w x^{2} / 2\right)(-x / 2) / 1.25 \times 10^{-3}\right] d x . \\
& =\frac{2 \times 10^{3}}{1.25} \int_{0}^{5}\left(\frac{\omega x^{3}}{4}-\frac{5 \omega x^{2}}{2}\right) d x \\
& =\frac{2 \times 10^{3}}{1.25}\left[\frac{\omega \times 4}{16}-\frac{5 \omega x^{3}}{6}\right]_{0}^{5} \\
& =\frac{2 \times 10^{3} \omega}{1.25}\left[\frac{54}{16}-\frac{5 \times 5^{3}}{6}\right] \\
& =-104,167 \omega
\end{aligned}
$$

- $\int_{0}^{L} \frac{p_{1}^{2} d x}{E A}$
- WEMBERS $A E, D B, B E, D C=$ - MEMBER DE:

$$
=\frac{4}{E A} \int_{0}^{2.5 \sqrt{2}}(\pm 1 / \sqrt{2})^{2} d x+\frac{1}{E A} \int_{0}^{5}(1)^{2} d x
$$

NOTE: EA CONONANT, $(\pm 1 / \sqrt{2})^{2}=+1 / 2$

$$
\begin{aligned}
& =\frac{4 \times 10^{3}}{2}[x]_{0}^{2552}+1 \times 10^{3}[x]_{0}^{5} \\
& =1071+5000=12071
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{L} \frac{u_{1}^{2} d s}{E I} & =\frac{2 \times 10^{3}}{1-25} \int_{0}^{5}(-x / 2)^{2} d x \\
& =\frac{2 \times 10^{3}}{1-25} \int_{0}^{5} \frac{x^{2}}{4} \cdot d x \\
& =\frac{2 \times 10^{3}}{1.25}\left[x^{3} / 12\right]_{0}^{5} \\
& =\frac{2 \times 10^{3}}{1.25} \cdot \frac{5^{3}}{12}=16,667
\end{aligned}
$$

EUALUATE:

$$
\alpha_{1}=-\left[\frac{-104,167 \omega}{12,071+16,667}\right]=+3.625 \omega .
$$

THE POSITIVE UALUE WDLCATES THAT THE DMRECTEN ASSUNED FCR TLE WNT LOAD WAS CCRRET.

Axiag Landos

$$
P=P_{0}+\alpha_{1} P_{1}
$$

$A E \neq C D: P=0+3625 \omega(-1 / \sqrt{2})=-2.563 \omega$. (c)
$D B \neq B E: P=0+3.625 \mathrm{a}(+1 / \sqrt{2})=+2.563 \mathrm{us}(T)$
$D E: \quad P=0+3.625 \omega(-1)=-3.625 \mathrm{\omega s}$ (c)
THUS CRUR ImLAONARY DSD UAAS COREFCT in ITS AESKONAENT OF TEASTOW OR CMPRESSICN FORCES in THE TUSS.

SUEEAR FCRCES
WE ARE NOT REQULED TO ESTABCISM THESE IN TES RRCBLEMA.

BENDING UCMENTS

$$
M=M_{0}+\alpha_{1} M .
$$

WE ARE ONCY CONCERNED WITM ABC:

$$
\begin{aligned}
M_{A C C} & =\left\{5 \omega x-\omega x^{2} / 2\right\}+\{(3.625 \omega)(-x / 2)\} \\
& =3.1875 \omega x-0.5 \omega x^{2}
\end{aligned}
$$

Whaminm Mament ocaus at $\frac{d v}{d x}=0$.

$$
\begin{aligned}
\Rightarrow \frac{d u}{d x} & =3.1875 w-w x=0 \\
\Rightarrow x & =3.1875 w \\
\Rightarrow M_{\text {max }} & =(3.1875)^{2} w-\frac{(3.1875)^{2} w}{2} \\
& =5.08 w \quad\left(w_{m}\right)
\end{aligned}
$$

DETERMENE WMAX
TWO ACTRNS \& ASSOCWATED STRESSES TO CMECK:

- Axial - bensing.
- Axcal : max $O=100 \mathrm{~N} / \mathrm{mem}^{2}$

$$
\begin{aligned}
& \sigma_{m a x}=\frac{F_{m a x}}{A} \\
& 100=\frac{3.625 \omega \times 10^{3}}{1000} \frac{(N)}{\left(\omega m^{2}\right)} \\
& \Rightarrow \omega=\frac{1 \times 10^{5}}{3625 \times 10^{3}} \\
&=27.59 \mathrm{kN} / \mathrm{m} \\
& \Rightarrow(\mathrm{~N} / \mathrm{mm}=(\mathrm{m} / \mathrm{m})
\end{aligned}
$$

- FLEXURAL $=\max \sigma=150 \mathrm{~N} / \mathrm{mma}^{2}$

$$
\begin{aligned}
\theta_{\text {max }} & =\frac{M_{4}}{I} \\
150 & =\frac{5.08 \omega \times 10^{6} \times(50 \% / 2)}{125 \times 10^{7}} \\
\Rightarrow \omega & =150 \times 0.984 \\
& =147.64 \mathrm{NN} / \mathrm{m}
\end{aligned}
$$

THUS DLE WAXIGUMN UAL IS DEXERMLNED BY TUE AXLAL CCNLRESSIVE FCRCE IN MEUSER DE.

ExaryCe

$E I=120 \times 10^{3} / \mathrm{k} / \mathrm{Ma}^{2}$
$E A=60 \times 10^{3} \mathrm{hal}$
foar Heis structure:
(a) drou. He bsending momet diagron;
(b) tinal dey
(a)

Noosing if as the redendant gives:

$=4$
$M 0$

$$
t \alpha 0
$$

m_{1}

For Virtual abate:

$$
\begin{aligned}
& \delta \omega=0 \\
& \delta \omega_{E}=\delta u_{I} \\
& y \cdot \delta F=\Sigma e \cdot \delta P+\Sigma \theta \cdot \delta M \\
& 0 \cdot 1=\sum \frac{R C}{E A} \cdot \delta P+\sum \int_{D}^{C} \frac{M}{E I} \cdot \delta \mu d x \\
& \text { Bet } P=P_{0}+\alpha P_{1} \& M=m_{0}+\alpha M \text {, } \\
& \therefore 0=\sum \frac{\left(D_{0}+\alpha A\right) d P}{E A}+\sum \int_{0}^{L} \frac{\left(M_{0}+\infty M .\right)}{E I} \cdot \delta \mu \cdot d x
\end{aligned}
$$

But $P_{1} \& \delta P$ me equivalent, as are M, $\$ \delta M$

$$
\therefore O=\sum \frac{P_{1} P_{0} L}{E A}+\alpha \cdot \sum \frac{P_{1}^{2} L}{E A}+\sum \int_{0}^{1} \frac{M_{0} M_{1}}{E I} \cdot d x+\alpha \cdot \sum \int_{0}^{C} \frac{M_{1}^{2}}{E I} \cdot d x
$$

Calculating each term syperatels:

$$
\begin{aligned}
& -\sum \frac{P_{1} P_{0} L}{E A}=0 \operatorname{since} f_{0}=0 \\
& =\sum \frac{P_{1}^{2} L}{E A}=\frac{\left(P^{2} \cdot 2 \sqrt{2}\right.}{E I}=\frac{2 \sqrt{2}}{E A} \text { to member BF } \\
& =\int_{A}^{B} \frac{M_{1} M_{0} d}{E I}=\frac{1}{E I}\left[\frac{1}{2}(200)(-\sqrt{2})(2)\right]=\frac{-200 \sqrt{2}}{E I} \\
& -\int_{A}^{B} \frac{M_{1}^{2} d x}{E I}=\frac{1}{E I}\left[\frac{1}{3} \cdot(-\sqrt{2})(-\sqrt{2})(2)\right]=\frac{413}{E I}
\end{aligned}
$$

Thens:

$$
\begin{aligned}
& 0=0+x \cdot \frac{2 \sqrt{2}}{60 \times 10^{3}}-\frac{200 \sqrt{2}}{120 \times 10^{3}}+\alpha \cdot \frac{413}{120 \times 10^{3}} \\
& \therefore 0=x(4 \sqrt{2}+413)-200 \sqrt{2} \\
& \therefore \alpha=\frac{200 \sqrt{2}}{4 \sqrt{2}+413}=+40.46
\end{aligned}
$$

Thes lle tare in BF is 40.46 kN in tensim.
A'so

(b) To find SEy, we opply a urit load at is verticall, dcummands. We need anly use the primery shot we however, since it torms an equilibirum set:

far a deflection:

$$
\delta_{E J} \cdot 1=\sum \frac{P L}{E A} \cdot \delta P+\sum \int_{D}^{L} \frac{W}{E I} \cdot d u \cdot d x
$$

Since $\delta \delta=0$ we need carly colculvet the second lime:

- For Ab:

$$
\int \frac{m \cdot \delta m}{E I}=\frac{1}{E I}\left[\frac{1}{2}(200+142.8)(4)(2)\right]=\frac{1321.2}{E I}
$$

- Far BC:
- for CD:

$$
\begin{aligned}
M(\theta) & =100 \times 2 \sin \theta \\
& =200 \sin \theta
\end{aligned}
$$

$$
\operatorname{far}(\theta)=?+1 \times 2 \sin \theta
$$

$$
=2+2 \sin \theta
$$

Also, note but since we ore now intgroting using the anglo, we unust change the $d x$ bo a $d \theta$.

$$
\therefore d x=t \cdot d \theta=2 d \theta
$$

Thus: $\left.\int_{C}^{D} \frac{M \cdot \delta u 1}{E I} d v=\int_{0}^{\pi / 2}(200 \sin \theta)(2+2 \sin \theta) \cdot 2+A\right)$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2}\left(800 \sin \theta+800 \sin ^{2} \theta\right) d \theta \\
& =800 \int_{0}^{\pi / 2} \sin \theta d \theta+800 \int_{0}^{\pi / 2} \sin ^{2} \theta \cdot 1 \theta
\end{aligned}
$$

Toking each term in thurs:

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin \theta d \theta & =-\left.\cos \theta\right|_{0} ^{1 / 2}=-0-(-1) \cdots+1 \\
\int_{0}^{\pi / 2} \sin ^{2} \theta d \theta & =\left[\frac{\theta}{2}-\frac{1}{4} \sin ^{2} \theta\right]_{0}^{\pi / 2} \\
& \left.=\left(\frac{\pi}{4}-\frac{1}{4} \cdot(1)^{2}\right)-\left(0-\frac{1}{4}(0)\right)^{2}\right) \\
& =\pi / 4-1 / 4 \\
\therefore \int_{C}^{D} \frac{M \cdot 0) / 1}{E I} \cdot d x & =800(1)+800\left(\frac{\pi}{4} \cdot 1 / 4\right)=\frac{200 \pi+600}{E I}
\end{aligned}
$$

Thus:

$$
\begin{aligned}
\delta_{E y} & =\frac{1371.2}{E I}+\frac{1600}{E I}+\frac{200 \pi+600}{E I} \\
& =+\frac{4199.5}{E I}
\end{aligned}
$$

For $E I=120 \times 0^{3} \mathrm{hnm}^{2}$, we have:

$$
d_{t y} y+3 \sin m
$$

